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Abstract
Enhanced precision measurements using entangled many particle states are crucial
for their technological applications in quantum information science and metrology.
Squeezed spin states are a class of permutation symmetric N particle entangled states,
which exhibit reduced quantum fluctuation in their collective spin angular momen-
tum in a certain direction, and they are useful for quantum enhanced metrology.
Permutation symmetric states attract attention as they offer significant test grounds
for the description of entanglement in multipartite quantum systems, which is cru-
cial for processing complex quantum information tasks. Spin squeezing serves as
an experimentally amenable collective criterion of entanglement in symmetric multi-
qubit systems. In this paper, we explore spin-squeezing behavior in different classes
of N -qubit symmetric states consisting of all permutations of two distinct spinors.
We employ Majorana geometric representation of multiqubit states obeying exchange
symmetry for this purpose. We prove that N qubit symmetric states consisting of two
distinct non-orthogonal spinors do exhibit spin squeezing, thus expanding the avenues
of their applicability in quantum enhanced sensing tasks.
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1 Introduction

Quantum states of N two-level atoms (qubits) obeying exchange symmetry were
introduced by Dicke [1] in 1954 to explain the phenomenon of superradiance in quan-
tum optics. Recent years have witnessed revolutionary experimental progress [2–6]
in controlled generation of multiqubit Dicke states in different physical systems such
as photons, cold atoms and trapped ions. Entanglement in multiqubit systems is a
useful resource in quantum metrology and in quantum information science. Witness-
ing entanglement in multiqubit systems containing about 103 to 1012 atoms, that
can only be addressed collectively, is a difficult task [7]. Collective measurements
of the mean value and variance of total spin of the system aid experimental detec-
tion of entanglement in permutation symmetric ensemble of atoms. An established
experiment-friendly criterion of entanglement in permutation symmetric N -qubit sys-
tems is spin squeezing, which manifests in the form of reduced variance of collective
spin of the system, in a specific direction, below the value N/4 set by uncorrelated
spin coherent state [8–34]. Correlations present in spin-squeezed states find poten-
tial applications in quantum enhanced metrology [35,36]. This has triggered many
experiments generating spin-squeezed states in different platforms [37–47].

Formally, a permutation symmetric ensemble of N qubits is treated as a
spin-N/2 system characterized by collective spin angular momentum components

Ĵi = ∑N
k=1

σ̂
(k)
i
2 , i = x, y, z where σ̂

(k)
i are the Pauli matrices of the kth

qubit. In an uncorrelated state (spin coherent state), minimum value of variance
(�J⊥)2 = 〈

J 2⊥
〉 − 〈J⊥〉2 of collective spin in the direction orthogonal to the mean

spin direction is N/4. Quantum correlations between elementary spin-1/2 particles
could manifest via reduced value of variance (�J⊥)2min below N/4.

Various definitions of spin squeezinghavebeenproposed in the literature in different
contexts [32]. We confine our attention to the one proposed originally by Kitegawa
and Ueda [11], which captures the essence of spin squeezing in a most natural way.
Spin-squeezing parameter offers a simple experimental criterion for the detection of
entanglement in many particle systems, where it is not possible to address individual
particles. Kitegawa and Ueda introduced a spin-squeezing parameter [11]

ξ = 2 (�J⊥)min√
N

(1)

which is equal to 1 in a spin coherent state and is less than 1 in a spin-squeezed state.
In symmetric multiqubit states, the criterion ξ < 1 implies entanglement, but the
converse is not in general true [28,48,49].

Mathematical treatment of symmetric multiqubit system is simpler because a N
qubit system, obeying exchange symmetry, gets confined to the N + 1-dimensional
subspace of the 2N -dimensional Hilbert space. This symmetric subspace is spanned by
the Dicke states,

{∣
∣ N
2 , N

2 − r
〉
, r = 0, 1, 2, . . . , N

}
which are simultaneous eigen-

states of collective spin operators Ĵ 2, Ĵz . Dicke states (except in the case of r = 0, N )
consist of permutations of two distinct orthogonal spinors |0〉 (spin-up) and |1〉 (spin-
down), which can be represented by diagonally opposite points on the Bloch sphere.
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An elegant geometrical representation of multiqubit states was proposed by Majo-
rana [50] in 1932. The Majorana geometric representation enables one to visualize
multiqubit pure symmetric states composed of N distinct qubits (spinors) as con-
stellation of N distinct points on the Bloch sphere [50]. While N -qubit Dicke states
consist of two distinct orthogonal spinors |0〉, |1〉, a natural extension is to consider N -
qubit symmetric states characterized by two non-orthogonal spinors. It is well known
that Dicke states

{∣
∣ N
2 , N

2 − r
〉
, r = 0, 1, 2, . . . , N

}
(except in the case of r = 0

and r = N ) are entangled, but are not spin squeezed [28,49]. It has also been rec-
ognized that N -qubit symmetric states, consisting of permutations of two or more
distinct spinors, are always entangled [51–54] but their spin-squeezing property is
not explored so far. In this paper, we investigate spin-squeezing behavior of different
classes of N -qubit symmetric states consisting of two distinct spinors—denoted by
{DN−k,k}, k = 1, 2, . . . (N − 1)/2 (for odd N ) or N/2 (for even N )—where one
of the spinors occurs k times and the other (N − k) times [51–53]. We show that
spin-squeezing parameter ξ [see Eq. (1)] is less than 1 for those states of the fam-
ily {DN−k,k} with two distinct non-orthogonal spinors, indicating that they are spin
squeezed. Spin-squeezing behavior of this class of states has not been explored so far.
Thus, our investigation opens up applicability of this class of collective spin states in
quantum enabled sensing.

This paper is organized as follows: Sect. 2 gives a brief overview of the Majo-
rana geometric representation of symmetric N -qubit states and provides a canonical
structure for the family of states {DN−k,k}, k = 1, 2, . . . (N − 1)/2 (for odd N ) or
N/2 (for even N ) consisting of two distinct spinors. In Sect. 3, we first express the
spin-squeezing parameter ξ for states belonging to the family {DN−k,k} in terms of
the elements of their two-qubit density matrix. We then evaluate the two-qubit density
matrices of the N -qubit states belonging to {DN−k,k}, for each k. On evaluating the
spin-squeezing parameter using the corresponding reduced two-qubit density matrices
in Sect. 3, we show that the states belonging to the family {DN−k,k} are spin squeezed
when the two constituent spinors are not orthogonal. Section 4 gives a brief summary
of results.

2 Majorana representation of pure symmetric multiqubit states

In the novel 1932 paper [50], Ettore Majorana proposed that a quantum system pre-
pared in a pure spin j = N

2 state can be represented as a permutation of the states of
N constituent spinors (qubits) as follows:

|Ψsym〉 = N
∑

P

P̂ {|ε1, ε2, . . . εN 〉}, (2)

where
|εr 〉 = ar |0〉 + br e

iβr |1〉, r = 1, 2, . . . , N , a2r + b2r = 1 (3)

denote the spinors constituting the symmetric N -qubit state |Ψsym〉; P̂ corresponds
to the set of all N ! permutations and N denotes normalization factor. Equation (2) is
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referred to as theMajorana geometric representation of a pure quantum state |Ψsym〉 of
spin j = N/2. Equivalently, |Ψsym〉 in Eq. (2) represents the permutationally symmet-
ric N qubit state, expressed in terms of the constituent spinors |εr 〉, r = 1, 2, . . . N . It
may be seen that when all the N spinors |εr 〉, r = 1, 2, . . . , N are identical, the state
|DN 〉 = |ε, ε, . . . ε〉 is separable. Symmetric N qubit states consisting of two distinct
spinors |ε1〉, |ε2〉 are denoted by {DN−k,k} with representative states given by,

|DN−k,k〉 = N
∑

P

P̂

⎧
⎨

⎩
| ε1, ε1, . . . ε1︸ ︷︷ ︸

N−k

, ε2, ε2, . . . ε2︸ ︷︷ ︸
k

〉
⎫
⎬

⎭
(4)

where k = 1, 2, . . . (N − 1)/2 (for odd N ) or N/2 (for even N ). Dicke states∣
∣ N
2 , N

2 − r
〉
, with 0 < r < N are representative states of the family {DN−k,k}, con-

taining permutations of two orthogonal spinors |ε1〉 = |0〉, |ε2〉 = |1〉. In general,
a symmetric state |DN−k,k〉 of N qubits belonging to the family {DN−k,k} of two
distinct spinors can be reduced to a canonical form, characterized by only one real
parameter [51,55], with the help of identical local unitary transformations on individ-
ual qubits. More specifically, a symmetric pure state |DN−k,k〉, given in Eq. (4), is
equivalent (under local unitary transformations) to the canonical state [51,55]:

|DN−k,k〉 ≡
k∑

r=0

β(k)
r

∣
∣
∣
∣
N

2
,
N

2
− r

〉

,

β(k)
r = N

√
N !(N − r)!

r !
ak−r br

(N − k)!(k − r)! (5)

consisting of permutations of two distinct spinors |ε′
1〉 = |0〉 and |ε′

2〉 = a |0〉 + b |1〉
where 0 ≤ a < 1 is a real positive parameter and b = √

1 − a2. Dicke states,
characterized by two orthogonal spinors |0〉, |1〉, have a = 0. When a = 1, the
N -qubit symmetric state is characterized by a single spinor |0〉 and corresponds to a
separable state. The states |DN−k,k〉 with 0 < a < 1 are the ones characterized by
non-orthogonal spinors.

While symmetric N -qubit states consisting of permutations of two or more distinct
spinors are shown to be entangled [51–53], it is not known whether this entanglement
manifests itself in terms of collective spin-squeezing behavior. In this context, it has
been shown that Dicke states (constructed by permutation of two distinct orthogonal
spinors) are entangled—but they are not spin squeezed [28,49]. Thus, it is of impor-
tance to investigate spin-squeezing property of the states |DN−k,k〉 characterized by
a general class of N qubit permutation symmetric states consisting of two distinct,
non-orthogonal spinors.

3 Spin squeezing in N-qubit pure states characterized by two distinct
spinors

Spin squeezing being a collective property of an ensemble of symmetric qubits, one
needs to find mean value and variances of collective angular momentum operator to
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evaluate the spin-squeezing parameter ξ [see Eq. (1)]. It has been shown that the mean
value, variances of total angular momentum, and hence the spin-squeezing parameter
ξ of an N qubit symmetric state can be expressed entirely in terms of the correlation
matrix elements of its reduced two-qubit density matrix [24,28]. By construction, this
method of evaluating spin-squeezing parameter is exactly identical to the usual way of
calculating them in terms of the average and variances of the collective total angular
momentum explicitly.

In Ref. [28], it is shown that the spin-squeezing parameter ξ [see Eq. (1)] of a
N -qubit symmetric state can be expressed as,

ξ =
[
1 + (N − 1)(̃n̂⊥ T n̂⊥)min

]1/2
. (6)

where T = (ti j ), i, j = x, y, z denotes the real symmetric 3 × 3 correlation matrix
corresponding to the reduced two-qubit densitymatrix of a symmetric N -qubit state. If
ρ denotes the reduced two-qubit density matrix of a symmetric N -qubit state, obtained
by tracing over any of its N − 2 qubits, the correlation matrix elements ti j are given
by

ti j = Tr
[
ρ (σi ⊗ σ j )

] = Tr
[
ρ (σ j ⊗ σi )

]
(7)

where σi , i = x, y, z are the Pauli spin matrices. The unit vector n̂⊥ in Eq.(6) is
perpendicular to the mean spin vector n̂0 given by

n̂0 = 〈 Ĵ 〉
|〈 Ĵ 〉| =

(
〈 Ĵx 〉, 〈 Ĵy〉, 〈 Ĵz〉

)

√
〈 Ĵx 〉2 + 〈 Ĵy〉2 + 〈 Ĵz〉2

(8)

and˜̂n⊥ is the transpose of n̂⊥. As the mean spin vector of all the qubits in a symmetric
multiqubit state are identical, one has

n̂0 = (sx , sy, sz)
√
s2x + s2y + s2z

(9)

with
si = Tr [ρ (σi ⊗ I )] = Tr [ρ (I ⊗ σi )] , i = x, y, z (10)

being the components of the qubit orientation s in the two-qubit subsystem ρ.
Choosing a suitable co-ordinate system with mutually orthogonal triads n̂1, n̂2, n̂0

of basis vectors, such that the Z -axis is aligned along themean spin direction n̂0, it may
be seen that the quadratic form (̃n̂⊥T n̂⊥)min is the minimum eigenvalue [24,28,34] of
the 2 × 2 block T⊥ of the correlation matrix T in the basis n̂1, n̂2 orthogonal to the
mean spin vector n̂0.

(̃n̂⊥T n̂⊥)min = 1

2

[
(
˜̂n1 T n̂1 + ˜̂n2 T n̂2

)

−
√

(
˜̂n1 T n̂1 − ˜̂n2 T n̂2

)2 + 4
(
˜̂n1 T n̂2

)2
]

. (11)
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Consequently, the spin-squeezing parameter ξ can be expressed in an operationally
simple form, on substituting Eq. (11) into Eq. (6). In other words, the Kitegawa–Ueda
spin-squeezing parameter ξ may be evaluated using the reduced two-qubit density
matrix of any random pair of qubits of a N -qubit symmetric system.

In the following subsections, we evaluate the general form of the reduced two-
qubit density matrix of any random pair of qubits of the state |DN−k,k〉 [see Eq. (5)],
belonging to the family {DN−k,k} and deduce their spin-squeezing property.

3.1 Evaluation of two-qubit density matrices of the state |DN−k,k〉

The two-qubit density matrix ρ(k) corresponding to any random pair of qubits in the
state |DN−k, k〉 ∈ {DN−k,k} is given by,

ρ(k) = TrN−2
(|DN−k, k〉〈DN−k, k |

)

= TrN−2

⎧
⎨

⎩

k∑

r ,r ′=0

β(k)
r β

(k)
r ′

∑

m2,m′
2

[

c(r)
m2

c(r ′)
m′
2

∣
∣
∣
∣
N

2
− 1,

N

2
− r − m2

〉

〈
N

2
− 1,

N

2
− r ′ − m′

2

∣
∣
∣
∣ ⊗ |1,m2〉〈1,m′

2|
]
⎫
⎬

⎭

=
∑

m2,m′
2=1,0,−1

ρ
(k)
m2,m′

2
|1,m2〉〈1,m′

2|, (12)

where

ρ
(k)
m2,m′

2
=

k∑

r ,r ′=0

β(k)
r β

(k)
r ′ c(r)

m2
c(r ′)
m′
2

⎧
⎨

⎩

(N/2)−1∑

m1=(−N/2)+1

〈
N

2
− 1,m1

∣
∣
∣
∣
N

2
− 1,

N

2
−r−m2

〉

〈
N

2
− 1,

N

2
− r ′ − m′

2

∣
∣
∣
∣
N

2
− 1,m1

〉
⎫
⎬

⎭
(13)

The associatedClebsch–Gordan coefficients c(r)
m2=C

( N
2 − 1, 1, N

2 ;m − m2, m2,m
)
,

m = N
2 − r , m2 = 1, 0, −1 are given explicitly by [56]

c(r)
1 =

√
(N − r)(N − r − 1)

N (N − 1)
, c(r)

−1 =
√

r (r − 1)

N (N − 1)
,

c(r)
0 =

√
2r (N − r)

N (N − 1)
(14)

By expressing ρ(k) in the standard two-qubit basis {|0A, 0B〉, |0A, 1B〉, |1A, 0B〉, |1A,

1B〉}, (using the relations between angular momentum basis |1,m2 = ±1, 0〉 and the
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local qubit basis, i.e., |1, 1〉 = |0A, 0B〉, |1, 0〉 = (|0A, 1B〉+|1A, 0B〉)/√2, |1,−1〉 =
|1A, 1B〉), one obtains the following simplified form [26,57] for the symmetric two-
qubit reduced density matrix:

ρ(k) =

⎛

⎜
⎜
⎝

A(k) B(k) B(k) C (k)

B(k) D(k) D(k) E (k)

B(k) D(k) D(k) E (k)

C (k) E (k) E (k) F (k)

⎞

⎟
⎟
⎠ , (15)

where A(k), B(k), C (k), D(k), E (k) and F (k) are real.
Now, we proceed to discuss spin squeezing in detail in the illustrative cases k = 1, 2

in the family of states {DN−k, k}.

3.2 Spin squeezing in the class of states {DN−1, 1}

The reduced two-qubit density matrix ρ(1) drawn from the N -qubit pure states of the
family {DN−1, 1} [see Eq. (12)] has the following explicit structure:

ρ(1) = TrN−2
(|DN−1, 1〉〈DN−1, 1

)

=
((

β
(1)
0

)2 +
(
β

(1)
1 c(1)

1

)2
)

|1, 1〉〈1, 1|

+
(
β

(1)
1 c(1)

0

)2 |1, 0〉〈1, 0| + β
(1)
0 β

(1)
1 c(1)

0 |1, 1〉〈1, 0|
+β

(1)
0 β

(1)
1 c(1)

0 |1, 0〉〈1, 1| (16)

Here, [see Eq. (5)] we have β
(1)
0 = N N a, β

(1)
1 = N

√
N (1 − a2) with

N = 1√
N2 a2+N (1−a2)

and the associated nonzero Clebsch–Gordan coefficients

[see Eq. (14)] are given by

c(1)
1 =

√
N − 2

N
, c(1)

0 =
√

2

N
. (17)

Furthermore, in the standard two-qubit basis {|0A, 0B〉, |0A, 1B〉, |1A, 0B〉, |1A, 1B〉},
we obtain

ρ(1) =

⎛

⎜
⎜
⎝

A(1) B(1) B(1) 0
B(1) D(1) D(1) 0
B(1) D(1) D(1) 0
0 0 0 0

⎞

⎟
⎟
⎠

where

A(1) = N 2a2 + (N − 2)(1 − a2)

N 2 a2 + N (1 − a2)
, B(1) = a

√
1 − a2

1 + a2(N − 1)
,
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D(1) = 1 − a2

N 2 a2 + N (1 − a2)
, (18)

We obtain the qubit orientations [see Eq. (10)]

sx = 2 B(1), sy = 0, sz = A(1)

using which we find an orthogonal triad of basis vectors

n̂0 =
⎛

⎝ sx
√
s2x + s2z

, 0,
sz

√
s2x + s2z

⎞

⎠ ,

n̂1 = (0, 1, 0),

n̂2 =
⎛

⎝− sz
√
s2x + s2z

, 0,
sx

√
s2x + s2z

⎞

⎠

with n̂0 denoting the mean spin direction. On simplifying, we obtain [see Eq. (11)]
˜̂n1 T n̂2 = ˜̂n2 T n̂1 = 0 and (̃n̂⊥T n̂⊥)min = ˜̂n2 T n̂2. Thus, the corresponding spin-
squeezing parameter takes the form1 [see (Eq. 6)]

ξ =
√

1 + (N − 1) (̃n̂2 T n̂2) (19)

where

˜̂n2 T n̂2 =
2
[(
A(1)

)2
D(1) − 2

(
B(1)

)2
]

4
(
B(1)

)2 + (
A(1)

)2 . (20)

In Fig. 1, we have plotted ξ , for the states in the family {DN−1,1}, as a function of
the parameter a and number of qubits N . It can be seen that the states of the family
|DN−1,1〉 are spin squeezed, except when a = 0.

3.3 Spin squeezing in the class {DN−2, 2}

When k = 2, the state |DN−k,k〉 has the form [see Eq. (5)]

|DN−2,2〉 = β
(2)
0

∣
∣
∣
∣
N

2
,
N

2

〉

+ β
(2)
1

∣
∣
∣
∣
N

2
,
N

2
− 1

〉

+ β
(2)
2

∣
∣
∣
∣
N

2
,
N

2
− 2

〉

(21)

1 For states belonging to the class {DN−k,k }with different values of k = 2, 3, . . ., we find that (i) the mean
spin direction (denoted by the unit vector n̂0) lies in the XZ plane and (ii) the 2× 2 block T⊥ of correlation
matrix T , which is expressed in the basis (n̂1, n̂2) orthogonal to the mean spin direction n̂0, is diagonal,

i.e., ˜̂n1 T n̂2 = 0. It is seen that min
(
˜̂n1 T n̂1, ˜̂n2 T n̂2

)
= ˜̂n2 T n̂2. Thus, the spin-squeezing parameter

[see Eqs. (6) and (11)] takes the form ξ =
√

1 + (N − 1) (̃n̂2 T n̂2) for any k and N .
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Fig. 1 Spin-squeezing parameter ξ as a function of the parameter a and number of qubits N in the class
{DN−1,1} of N -qubit pure symmetric states with two distinct spinors

where

β
(2)
0 = N N (N − 1)

2
a2, β

(2)
1 = N

√
N (N − 1)a

√
1 − a2,

β
(2)
2 = N

√
N (N − 1)

2
(1 − a2). (22)

andN , the normalization factor, satisfies the relation (β
(2)
0 )2 + (β

(2)
1 )2 + (β

(2)
2 )2 = 1.

Following the procedure outlined in Sect. 3.1, we evaluate the two-qubit reduced
density matrix ρ(2) = TrN−2

(|DN−2, 2〉〈DN−2, 2|
)
and express it in the standard two-

qubit basis {|0A, 0B〉, |0A, 1B〉, |1A, 0B〉, |1A, 1B〉}:

ρ(2) =

⎛

⎜
⎜
⎝

A(2) B(2) B(2) C (2)

B(2) D(2) D(2) E (2)

B(2) D(2) D(2) E (2)

C (2) E (2) E (2) F (2)

⎞

⎟
⎟
⎠ .

Here, we have

A(2) =
(
β

(2)
0

)2 +
(
β

(2)
1 c(1)

1

)2 +
(
β

(2)
2 c(2)

1

)2
,

B(2) = β
(2)
0 β

(2)
1 c(1)

0 + β
(2)
1 β

(2)
2 c(1)

1 c(2)
0√

2
,

C (2) = β
(2)
0 β

(2)
2 c(2)

−1,
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D(2) =
(
β

(2)
1 c(1)

0

)2 +
(
β

(2)
2 c(2)

0

)2

2
,

E (2) = β
(2)
1 β

(2)
2 c(1)

0 c(2)
−1√

2
,

F (2) =
(
β

(2)
2 c(2)

−1

)2
.

where some of the nonzero Clebsch–Gordan coefficients [see Eq. (14)] are given in
Eq. (17) and the remaining are given by

c(2)
1 =

√
(N − 3)(N − 2)

N (N − 1)
, c(2)

0 = 2

√
N − 2

N (N − 1)

c(2)
−1 =

√
2

N (N − 1)
. (23)

Substituting for β
(2)
i , i = 0, 1, 2 and the Clebsch–Gordan coefficients, we obtain

the density matrix ρ(2) in terms of the number N of qubits, and the real parameter
a. We then evaluate the spin-squeezing parameter ξ following the same procedure
followed in Sect. 3.2, while discussing the class {DN−1,1}. We identify that the
mean spin direction n̂0 lies in the XZ plane and the element of correlation matrix
˜̂n1 T n̂2 = 0. This facilitates the evaluation of the spin-squeezing parameter to be

ξ =
√

1 + (N − 1) (̃n̂2 T n̂2). We have plotted ξ as a function of the parameter a for
different values of N in Fig 2.

In general, for any arbitrary k, we evaluate the two-qubit density matrix ρ(k) =
TrN−2

(|DN−k, k〉〈DN−k, k |
)
, in the standard two-qubit basis, in the form given in Eq.

(15) with elements A(k), B(k),C (k), D(k), E (k), F (k) given by,

A(k) =
k∑

r=0

(
β(k)
r c(r)

1

)2
,

B(k) = 1√
2

k−1∑

r=0

β(k)
r β

(k)
r+1 c

(r)
1 c(r+1)

0 ,

C (k) =
k−2∑

r=0

β(k)
r β

(k)
r+2 c

(r)
1 c(r+2)

−1 ,

D(k) = 1

2

k−1∑

r=0

(β
(k)
r+1)

2 c(r+1)
0

2
,

E (k) = 1√
2

k−2∑

r=0

β
(k)
r+1 β

(k)
r+2 c

(r+1)
0 c(r+2)

−1 ,

123



Spin squeezing in symmetric multiqubit states… Page 11 of 15   144 

Fig. 2 Spin-squeezing parameter ξ as a function of the parameter a and number of qubits N in the class
{DN−2,2} of pure symmetric states

F (k) =
k−2∑

r=0

(
β

(k)
r+2 c

(r+2)
−1

)2
.

The mean spin direction n̂0 of the qubits in |DN−k,k〉 lies in the XZ plane, and the
spin-squeezing parameter ξ for any arbitrary state |DN−k,k〉 belonging to the family

{DN−k,k} can be readily evaluated using ξ =
√

1 + (N − 1) (̃n̂2 T n̂2) where

˜̂n2 T n̂2 = 2
(
A(k) − F (k)

)2 (
C (k) + D(k)

)

[
4

(
B(k) + E (k)

)2 + (
A(k) − F (k)

)2
]

+ 4
(
B(k) + E (k)

)2 (
1 − 4D(k)

)

[
4

(
B(k) + E (k)

)2 + (
A(k) − F (k)

)2
]

−
8

(
A(k) − F (k)

) ((
B(k)

)2 − (
E (k)

)2
)

[
4

(
B(k) + E (k)

)2 + (
A(k) − F (k)

)2
] .

In Fig. 3, we have illustrated the variation of the spin-squeezing parameter ξ in the
N -qubit pure symmetric state |DN−k,k〉 with different k and N .

It can be readily seen from Fig. 3 that for a fixed N , the collective spin-squeezing
parameter of the state |DN−k,k〉 reduces with the increase in k. In other words, the
N qubit states |DN−k,k〉 exhibit higher spin squeezing for larger values of k. This
is consistent with the fact that entanglement between constituent qubits sharing the
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Fig. 3 Spin-squeezing parameter
ξ of states |DN−k,k 〉 [see (Eq.
5)] for different values of
k = 1, 2, 3, 4, 5 and for number
of qubits N = 20 and N = 100

state |DN−k, k〉 increases with the increase in k, attaining a maximum, respectively,
for k = N/2 for even N , and k = (N − 1)/2 for odd N [51,54]. It is clearly seen that
(i) the states {|DN−k, k〉, 0 < a < 1}, characterized by two distinct non-orthogonal
spinors, exhibit spin squeezing; (ii) for a given N , enhanced spin-squeezing behavior
(equivalently, decrease in the parameter ξ below 1) is witnessed as k increases. This
may be attributed to larger entanglement as k increases.

Recall that the one parameter family of N qubit symmetric states {|DN−k, k〉},
reduce to the entangled (but non-squeezed) Dicke state |N/2, N/2− k〉, k = 1, 2, . . .
and to the product state |N/2, N/2〉 = |0〉⊗ N of qubits for the extreme values of the
real parameter a = 0, 1. The spin-squeezing parameter ξ varies smoothly between
the two end points a = 0, 1 (at these end points the parameter ξ ≥ 1, i.e., there is
no spin squeezing at a = 0, 1) and exhibits a valley as a function of the parameter
0 < a < 1. The position of the valley shifts for different values of k, in agreement
with the fact that, larger the spin squeezing (decrease in the value of ξ ), higher the
value of k—which is analogous to the behavior of entanglement [51,54]. .

4 Summary

We have explored spin squeezing in symmetric multiqubit pure states |DN−k,k〉
characterized by two distinct non-orthogonal Majorana spinors. To evaluate the spin-
squeezing parameter ξ of the state |DN−k,k〉, we make use of the expression [see
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Eq. (6)] for ξ given entirely in terms of the elements of the density matrix corre-
sponding to any random pair of qubits of the state |DN−k,k〉 [24]. We have used the
canonical form of the state |DN−k,k〉 which is characterized by a single real param-
eter a [see Eq. (5)] and divided the N -qubit state into two parts containing N − 2
and 2 qubits, respectively. By tracing over the N − 2 qubits, we obtain the density
matrix corresponding to any two qubits of the state |DN−k,k〉. The correlation matrix
elements of the two-qubit density matrix, expressed in the basis perpendicular to the
mean spin direction, lead to the evaluation the spin-squeezing parameter ξ . The varia-
tion of spin squeezing with respect to the real parameter 0 < a ≤ 1 characterizing the
state |DN−k,k〉 is graphically illustrated for different values of k = 1, 2, . . . (N −1)/2
(for odd N ) or N/2 (for even N ). While the Dicke states

∣
∣ N
2 , N

2 − l
〉
constituted by

permutations of two orthogonal spinors are not spin squeezed, our work brings out the
interesting fact that their generalizations, viz., N -qubit symmetric states consisting of
two non-orthogonal spinors, exhibit spin squeezing. As a result of recent technolog-
ical innovations in producing spin-squeezed states and their potential applicability in
diverse platforms such as high-precision spectroscopy, quantum enhanced metrology,
we believe that our work opens up expanding avenues of experimental investigations
on employing generalized Dicke-class of permutation symmetric states, in these areas
of promise.
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