

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

S Naveen,^a C. V. Kavitha,^b K. S. Rangappa,^b M. A. Sridhar^{a*} and J. Shashidhara Prasad^a

^aDepartment of Studies in Physics, Mansagangotri, University of Mysore, Mysore 570 006, India, and ^bDepartment of Studies in Chemistry, Mansagangotri, University of Mysore, Mysore 570 006, India

Correspondence e-mail: mas@physics.uni-mysore.ac.in

Key indicators

Single-crystal X-ray study $T=295~\mathrm{K}$ Mean $\sigma(\mathrm{C-C})=0.004~\mathrm{\mathring{A}}$ R factor = 0.054 wR factor = 0.168 Data-to-parameter ratio = 12.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(*Z*)-3-(3,4-Dimethoxyphenyl)-2-(4-methoxyphenyl)acrylonitrile

A new dipolarophile used in the construction of bioactive heterocycles, (Z)-3-(3,4-dimethoxyphenyl)-2-(4-methoxyphenyl)acrylonitrile, $C_{18}H_{17}NO_3$, has been synthesized by base-catalysed reaction of 3,4-dimethoxybenzaldehyde with (4-methoxyphenyl)acetonitrile. The olefinic bond has Z geometry and the molecules are linked by $C-H\cdots O$ and $C-H\cdots N$ hydrogen bonds.

Received 6 June 2006 Accepted 20 June 2006

Comment

2,3-Disubstituted acrylonitriles represent an interesting class of biologically active compounds and are capable of undergoing many useful organic transformations and have been transformed into bioactive heterocycles (Urska *et al.*, 2003). Using the nitrile function for C—C bond formation reaction is very important in organic chemistry (Collier *et al.*, 2004). The deprotonation of the α-carbon and alkylation is an important reaction (Murahashi *et al.*, 2004). Combretastatin A-4, (II), shows potent cytotoxicity against a wide variety of human cancer cell lines, including MDR cancer cell lines (El-Zayat *et al.*, 1993) and is thus an attractive lead compound for the development of anticancer drugs. The title compound (I) was designed as an analog of (II) in which the 3-hydroxy-4-methoxyphenyl unit was replaced by a 4-methoxyphenyl unit and olefinic bond carrying nitrile group.

$$\begin{array}{c|c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

Recently, the crystal structures of some bioactive heteroarylacrylonitriles have been reported (Maturana $et\ al.$, 2005). It has been found from the literature that the olefinic bond hase Z geometry, irrespective of the size of the substituents on the heterocyclic rings (Sonar $et\ al.$, 2005). The X-ray structure determination was carried out in order to confirm the olefinic bond geometry connected to 4-methoxyphenylacetonitrile and the 3,4-dimethoxyphenyl ring.

The molecular structure and atom-numbering scheme of (I) are shown in Fig. 1. In (I), the olefinic bond connecting the (4-methoxyphenyl)acetonitrile and 3,4-dimethoxyphenyl groups

© 2006 International Union of Crystallography All rights reserved

organic papers

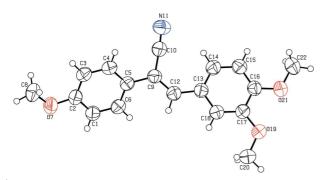


Figure 1 View of (I), with 50% probability displacement ellipsoids.

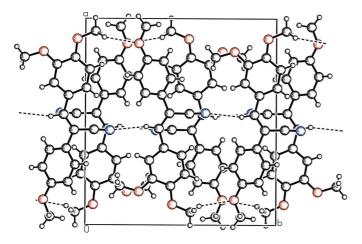


Figure 2 The crystal packing in (I), viewed down the c axis. Dashed lines indicate hydrogen bonds.

has Z geometry. Significant deviations from the ideal bondangle geometry around the Csp^2 atoms of the double bond are observed. The bond angles C13-C12—C9=132.13 (19)°, C12—C9-C5=123.86° and C10-C9-C5=114.50 (17)° are distorted due to steric hindrance of the double bond linking the two ring systems. The olefinic double bond bearing the three conjugated substituents in (I) has a length of 1.348 (4) Å, slightly longer than that observed in (Z)-2-(3-thienyl)-3-(3,4-dimethoxyphenyl)acrylonitrile [1.353 (3) Å; Sonar *et al.*, 2005] and 2-styrylbenzimidazole [1.304 (4) Å; Bacelo *et al.*, 1997], suggesting some delocalization of the unsaturated bridging units. The C18-C13-C12—C9 torsion angle of 169.4 (2)° indicates the deviation of the 3,4-dimethoxyphenyl ring from the plane of the olefinic double bond.

The structure exhibits intermolecular hydrogen bonds of the type $C-H\cdots O$ and $C-H\cdots N$ (Table 2), which help to stabilize the crystal structure. These intermolecular hydrogen bonds link the molecules into chains (Fig. 2).

Experimental

To a well stirred suspension of 3,4-dimethoxybenzaldehyde (1.13 g, 6.8 mmol) in 5% NaOH (10 ml) solution, was added (4-methoxyphenyl)acetonitrile (1 g, 6.8 mmol) along with a catalytic amount of *tert*-butylammonium bromide. The mixture was stirred at room temperature for 45 min, saturated sodium chloride solution (10 ml)

added, and extracted with diethyl ether (3 \times 15 ml). The combined organic layer was dried over anhydrous sodium sulfate and evaporated under vacuum to obtain a crude mass, which on recrystallization from methanol gave (I) as a pale-yellow crystalline solid (m.p 383.15 K). Analysis calculated for $C_{18}H_{17}NO_3$: C 73.20; H 5.80, N 4.74%; found: C 73.21, H 5.80, N 4.73%.

Crystal data

$C_{18}H_{17}NO_3$	Z = 4
$M_r = 295.33$	$D_x = 1.299 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 14.830 (9) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 13.688 (7) Å	T = 295 (2) K
c = 7.445 (16) Å	Block, pale yellow
$\beta = 91.724 (2)^{\circ}$	$0.25 \times 0.20 \times 0.20 \text{ mm}$
$V = 1511 (3) \text{ Å}^3$	

Data collection

MacScience DIPLabo 32001	2549 independent reflections
diffractometer	1955 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.019$
Absorption correction: none	$\theta_{\rm max} = 25.0^{\circ}$
4731 measured reflections	

Refinement

•	
Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.1039P)^2$
$R[F^2 > 2\sigma(F^2)] = 0.054$	+ 0.2197 <i>P</i>]
$wR(F^2) = 0.168$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
2549 reflections	$\Delta \rho_{\text{max}} = 0.20 \text{ e Å}^{-3}$
203 parameters	$\Delta \rho_{\min} = -0.19 \text{ e Å}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97
	Extinction coefficient: 0.042 (7)

Table 1 Selected geometric parameters (Å, °).

	•	•	
O7-C2	1.371 (4)	O21-C16	1.368 (4)
O7-C8	1.421 (4)	O21-C22	1.425 (4)
O19-C17	1.368 (4)	N11-C10	1.148 (4)
O19-C20	1.428 (4)		
C2-O7-C8	118.21 (18)	N11-C10-C9	176.5 (2)
C17-O19-C20	117.06 (17)	O21-C16-C15	124.50 (18)
C16-O21-C22	116.98 (17)	O21-C16-C17	116.14 (17)
O7-C2-C1	115.83 (18)	O19-C17-C16	115.41 (18)
O7-C2-C3	124.77 (18)	O19-C17-C18	125.39 (18)

Table 2 Hydrogen-bond geometry (Å, °).

$D-\mathbf{H}\cdot\cdot\cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathbf{H}\cdot\cdot\cdot A$
$C12-H12\cdots N11^{i}$ $C22-H22C\cdots O7^{ii}$	0.93	2.62	3.522 (8)	164
	0.96	2.55	3.341 (8)	140

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

H atoms were placed at idealized positions and allowed to ride on their parent atoms, with C—H = 0.92–0.98 Å and $U_{\rm iso}({\rm H}) = x U_{\rm eq}({\rm C})$, where x=1.5 for methyl H atoms and 1.2 for other H atoms.

Data collection: *XPRESS* (MacScience, 2002); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* (Otwinowski and Minor, 1997) and *SCALEPACK*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997);

molecular graphics: *PLATON* (Spek, 2003) and *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *PLATON*.

We thank the DST, Government of India, for financial assistance under projects SR/SO/HS-58/2003 and SP/I2/FOO/93.

References

Bacelo, D. E., Cox, O., Rivers, L. A., Cordero, M. & Huang, S. D. (1997). Acta Cryst. C53, 907–909.

Collier, S. J. & Langer, P. (2004). Sci. Synth. 19, 403-426.

- El-Zayat, A. A. E., Degen, D., Drabek, S., Clark, G. M., Pettit, G. R. & Von Hoff, D. D. (1993). *Anti-Cancer Drugs.* 4, 19–25.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- MacScience (2002). XPRESS. MacScience Co. Ltd, Yokohama, Japan.
- Maturana, R. A., Moya, J. H., Mahana, H. P., Lopez, B. W. & Munoz, J. C. (2005). *Acta Cryst.* C**61**, o237–o239.
- Murahashi, S.-I. (2004). Sci. Synth. 19, 345-402.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sonar, V. N., Parkin, S. & Crooks, P. A. (2005). *Acta Cryst.* C61, o78–o80. Spek, A. L. (2003). *J. Appl. Cryst.* 36, 7–13.
- Urska, B., Anton, M., Jurij, S. & Branko, S. (2003). Arkivoc, (v), 77-86.